Note
Go to the end to download the full example code.
PMD Compression#
Simple PMD compression, the hello world of masknmf

[25-10-29 20:03:05]: Starting compression
[25-10-29 20:03:05]: sampled from the following regions: [0]
[25-10-29 20:03:05]: We are initializing on a total of 2000 frames
[25-10-29 20:03:05]: Loading data to estimate complete spatial basis
[25-10-29 20:03:05]: skipping the pruning step for frame cutoff
[25-10-29 20:03:05]: Finding spatiotemporal roughness thresholds
0%| | 0/250 [00:00<?, ?it/s]
2%|▏ | 5/250 [00:00<00:05, 48.09it/s]
4%|▍ | 10/250 [00:00<00:04, 49.19it/s]
6%|▌ | 15/250 [00:00<00:04, 49.48it/s]
8%|▊ | 21/250 [00:00<00:04, 49.85it/s]
10%|█ | 26/250 [00:00<00:04, 49.86it/s]
13%|█▎ | 32/250 [00:00<00:04, 49.90it/s]
15%|█▍ | 37/250 [00:00<00:04, 49.89it/s]
17%|█▋ | 43/250 [00:00<00:04, 50.16it/s]
20%|█▉ | 49/250 [00:00<00:03, 50.55it/s]
22%|██▏ | 55/250 [00:01<00:03, 50.76it/s]
24%|██▍ | 61/250 [00:01<00:03, 50.88it/s]
27%|██▋ | 67/250 [00:01<00:03, 50.87it/s]
29%|██▉ | 73/250 [00:01<00:03, 50.84it/s]
32%|███▏ | 79/250 [00:01<00:03, 50.62it/s]
34%|███▍ | 85/250 [00:01<00:03, 50.56it/s]
36%|███▋ | 91/250 [00:01<00:03, 50.35it/s]
39%|███▉ | 97/250 [00:01<00:03, 50.37it/s]
41%|████ | 103/250 [00:02<00:02, 50.33it/s]
44%|████▎ | 109/250 [00:02<00:02, 50.43it/s]
46%|████▌ | 115/250 [00:02<00:02, 50.26it/s]
48%|████▊ | 121/250 [00:02<00:02, 50.11it/s]
51%|█████ | 127/250 [00:02<00:02, 50.00it/s]
53%|█████▎ | 133/250 [00:02<00:02, 49.99it/s]
55%|█████▌ | 138/250 [00:02<00:02, 49.96it/s]
57%|█████▋ | 143/250 [00:02<00:02, 49.92it/s]
59%|█████▉ | 148/250 [00:02<00:02, 49.89it/s]
62%|██████▏ | 154/250 [00:03<00:01, 50.01it/s]
64%|██████▍ | 160/250 [00:03<00:01, 50.06it/s]
66%|██████▋ | 166/250 [00:03<00:01, 50.01it/s]
69%|██████▉ | 172/250 [00:03<00:01, 49.95it/s]
71%|███████ | 177/250 [00:03<00:01, 49.91it/s]
73%|███████▎ | 182/250 [00:03<00:01, 49.93it/s]
75%|███████▍ | 187/250 [00:03<00:01, 49.94it/s]
77%|███████▋ | 192/250 [00:03<00:01, 49.88it/s]
79%|███████▉ | 197/250 [00:03<00:01, 49.76it/s]
81%|████████ | 202/250 [00:04<00:00, 49.78it/s]
83%|████████▎ | 208/250 [00:04<00:00, 49.88it/s]
85%|████████▌ | 213/250 [00:04<00:00, 49.72it/s]
88%|████████▊ | 219/250 [00:04<00:00, 49.78it/s]
90%|████████▉ | 224/250 [00:04<00:00, 49.82it/s]
92%|█████████▏| 230/250 [00:04<00:00, 49.79it/s]
94%|█████████▍| 235/250 [00:04<00:00, 49.76it/s]
96%|█████████▋| 241/250 [00:04<00:00, 49.83it/s]
98%|█████████▊| 246/250 [00:04<00:00, 49.83it/s]
100%|██████████| 250/250 [00:04<00:00, 50.06it/s]
[25-10-29 20:03:10]: Running Blockwise Decompositions
[25-10-29 20:03:10]: Constructed U matrix. Rank of U is 194
[25-10-29 20:03:10]: PMD Objected constructed
/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/fastplotlib/graphics/features/_base.py:18: UserWarning: casting float64 array to float32
warn(f"casting {array.dtype} array to float32")
# test_example = true
import masknmf
import torch
import fastplotlib as fpl
from urllib.request import urlretrieve
import tifffile
urlretrieve(
"https://github.com/flatironinstitute/CaImAn/raw/refs/heads/main/example_movies/demoMovie.tif",
"./demo.tif"
)
# always lazy load raw data by memmaping or other methods
data = tifffile.imread("./demo.tif")
block_sizes = [32, 32]
max_components = 20
# it's recommended to use masknmf on a machine with a GPU
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
# number of frames used to estimate the spatial basis in PMD
num_frames_for_spatial_fit = data.shape[0]
# perform PMD
pmd_result = masknmf.compression.pmd_decomposition(
data,
block_sizes,
num_frames_for_spatial_fit,
max_components=max_components,
device=device,
frame_batch_size=1024
)
# get the residual
pmd_residual = masknmf.PMDResidualArray(data, pmd_result)
# view the movies, note that all these array are LAZY evaluated, allowing you to view extremely large datasets!
iw = fpl.ImageWidget(
data=[data, pmd_result, pmd_residual],
names=["raw", "pmd", "residual"],
figure_kwargs={"size": (1000, 340), "shape": (1, 3)},
cmap="gnuplot2",
)
iw.show()
# use the time slider or set the frame index programmatically
iw.current_index = {"t": 1610}
# manually set vmin-vmax to emphasize noise in raw video
# you can also adjust the vmin-vmax using the histogram tool
# reset the vmin-vmax by clicking the buttons under "ImageWidget Controls"
for image in iw.managed_graphics:
image.vmax = 3_200
# remove toolbar to reduce clutter
for subplot in iw.figure:
subplot.toolbar = False
# ignore the remaining lines these are just for docs generation
figure = iw.figure
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
Total running time of the script: (0 minutes 41.683 seconds)