Note
Go to the end to download the full example code.
PMD Compression#
Simple PMD compression, the hello world of masknmf

/home/runner/work/masknmf-toolbox/masknmf-toolbox/masknmf/utils/_cuda.py:7: UserWarning: You've explicitly selected to perform computations on the cpu, performance will be significantly slower
warn(
[25-11-20 21:02:39]: Starting compression
[25-11-20 21:02:39]: sampled from the following regions: [0]
[25-11-20 21:02:39]: We are initializing on a total of 2000 frames
[25-11-20 21:02:39]: Loading data to estimate complete spatial basis
[25-11-20 21:02:39]: skipping the pruning step for frame cutoff
[25-11-20 21:02:39]: Finding spatiotemporal roughness thresholds
0%| | 0/250 [00:00<?, ?it/s]
2%|▏ | 5/250 [00:00<00:05, 47.55it/s]
4%|▍ | 11/250 [00:00<00:04, 49.16it/s]
6%|▋ | 16/250 [00:00<00:04, 49.44it/s]
8%|▊ | 21/250 [00:00<00:04, 49.61it/s]
11%|█ | 27/250 [00:00<00:04, 49.83it/s]
13%|█▎ | 33/250 [00:00<00:04, 49.91it/s]
16%|█▌ | 39/250 [00:00<00:04, 50.01it/s]
18%|█▊ | 45/250 [00:00<00:04, 50.04it/s]
20%|██ | 51/250 [00:01<00:03, 50.05it/s]
23%|██▎ | 57/250 [00:01<00:03, 50.15it/s]
25%|██▌ | 63/250 [00:01<00:03, 50.19it/s]
28%|██▊ | 69/250 [00:01<00:03, 50.08it/s]
30%|███ | 75/250 [00:01<00:03, 49.20it/s]
32%|███▏ | 80/250 [00:01<00:03, 48.51it/s]
34%|███▍ | 86/250 [00:01<00:03, 49.00it/s]
37%|███▋ | 92/250 [00:01<00:03, 49.31it/s]
39%|███▉ | 98/250 [00:01<00:03, 49.54it/s]
42%|████▏ | 104/250 [00:02<00:02, 49.60it/s]
44%|████▍ | 110/250 [00:02<00:02, 49.78it/s]
46%|████▋ | 116/250 [00:02<00:02, 49.89it/s]
49%|████▉ | 122/250 [00:02<00:02, 50.04it/s]
51%|█████ | 128/250 [00:02<00:02, 50.12it/s]
54%|█████▎ | 134/250 [00:02<00:02, 50.19it/s]
56%|█████▌ | 140/250 [00:02<00:02, 50.32it/s]
58%|█████▊ | 146/250 [00:02<00:02, 50.35it/s]
61%|██████ | 152/250 [00:03<00:01, 50.22it/s]
63%|██████▎ | 158/250 [00:03<00:01, 50.25it/s]
66%|██████▌ | 164/250 [00:03<00:01, 50.16it/s]
68%|██████▊ | 170/250 [00:03<00:01, 50.02it/s]
70%|███████ | 176/250 [00:03<00:01, 49.80it/s]
72%|███████▏ | 181/250 [00:03<00:01, 49.49it/s]
74%|███████▍ | 186/250 [00:03<00:01, 49.34it/s]
76%|███████▋ | 191/250 [00:03<00:01, 49.32it/s]
78%|███████▊ | 196/250 [00:03<00:01, 49.34it/s]
80%|████████ | 201/250 [00:04<00:00, 49.22it/s]
82%|████████▏ | 206/250 [00:04<00:00, 49.36it/s]
84%|████████▍ | 211/250 [00:04<00:00, 49.51it/s]
86%|████████▋ | 216/250 [00:04<00:00, 49.47it/s]
88%|████████▊ | 221/250 [00:04<00:00, 49.62it/s]
91%|█████████ | 227/250 [00:04<00:00, 49.74it/s]
93%|█████████▎| 233/250 [00:04<00:00, 49.78it/s]
96%|█████████▌| 239/250 [00:04<00:00, 49.81it/s]
98%|█████████▊| 245/250 [00:04<00:00, 49.85it/s]
100%|██████████| 250/250 [00:05<00:00, 49.77it/s]
100%|██████████| 250/250 [00:05<00:00, 49.73it/s]
[25-11-20 21:02:44]: Running Blockwise Decompositions
[25-11-20 21:02:44]: Constructed U matrix. Rank of U is 162
[25-11-20 21:02:44]: PMD Objected constructed
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/fastplotlib/graphics/features/_base.py:18: UserWarning: casting float64 array to float32
warn(f"casting {array.dtype} array to float32")
# test_example = true
import masknmf
import torch
import fastplotlib as fpl
from urllib.request import urlretrieve
import tifffile
urlretrieve(
"https://github.com/flatironinstitute/CaImAn/raw/refs/heads/main/example_movies/demoMovie.tif",
"./demo.tif"
)
# always lazy load raw data by memmaping or other methods
data = tifffile.imread("./demo.tif")
block_sizes = [32, 32]
max_components = 20
# it's recommended to use masknmf on a machine with a GPU
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
# number of frames used to estimate the spatial basis in PMD
num_frames_for_spatial_fit = data.shape[0]
# perform PMD
pmd_result = masknmf.compression.pmd_decomposition(
data,
block_sizes,
num_frames_for_spatial_fit,
max_components=max_components,
device=device,
frame_batch_size=1024
)
# get the residual
pmd_residual = masknmf.PMDResidualArray(data, pmd_result)
# view the movies, note that all these array are LAZY evaluated, allowing you to view extremely large datasets!
iw = fpl.ImageWidget(
data=[data, pmd_result, pmd_residual],
names=["raw", "pmd", "residual"],
figure_kwargs={"size": (1000, 340), "shape": (1, 3)},
cmap="gnuplot2",
)
iw.show()
# use the time slider or set the frame index programmatically
iw.current_index = {"t": 1610}
# manually set vmin-vmax to emphasize noise in raw video
# you can also adjust the vmin-vmax using the histogram tool
# reset the vmin-vmax by clicking the buttons under "ImageWidget Controls"
for image in iw.managed_graphics:
image.vmax = 3_200
# remove toolbar to reduce clutter
for subplot in iw.figure:
subplot.toolbar = False
# ignore the remaining lines these are just for docs generation
figure = iw.figure
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
Total running time of the script: (0 minutes 50.432 seconds)